NASA/TM-2009-215770

Rewriting Logic Semantics of a Plan
Execution Language

Gilles Dowek
Ecole Polytechnique, France

César A. Mufioz
Langley Research Center, Hampton, Virginia

Camilo Rocha
University of lllinois at Urbana-Champaign, Illinois

June 2009

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to
the advancement of acronautics and space science.
The NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer. It
collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI program
provides access to the NASA Aeronautics and Space
Database and its public interface, the NASA Technical
Report Server, thus providing one of the largest
collections of aeronautical and space science STI in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

e TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but having
less stringent limitations on manuscript length
and extent of graphic presentations.

e TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

e CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

e CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page at
http://www.sti.nasa.gov

e E-mail your question via the Internet to
help@sti.nasa.gov

e Fax your question to the NASA STI Help Desk
at 443-757-5803

e Phone the NASA STI Help Desk at
443-757-5802

e Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM-2009-215770

Rewriting Logic Semantics of a Plan
Execution Language

Gilles Dowek
Ecole Polytechnique, France

César A. Mufioz
Langley Research Center, Hampton, Virginia

Camilo Rocha
University of lllinois at Urbana-Champaign, Illinois

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2009

Acknowledgments

This work was supported by the National Aeronautics and Space Administration at
Langley Research Center under the Research Cooperative Agreement No. NCC-1-02043
awarded to the National Institute of Aerospace. The authors would like to thank the
members of the NASA’s Automation for Operation (A40) project and, specially, the
PLEXIL development team led by Michael Dalal at NASA Ames for their technical
support.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320
443-757-5802

Abstract

The Plan Ezecution Interchange Language (PLEXIL) is a synchronous language
developed by NASA to support autonomous spacecraft operations. In this paper,
we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance
logical engine. The rewriting logic semantics is by itself a formal interpreter of
the language and can be used as a semantic benchmark for the implementation of
PLEXIL executives. The implementation in Maude has the additional benefit of
making available to PLEXIL designers and developers all the formal analysis and
verification tools provided by Maude. The formalization of the PLEXTL semantics
in rewriting logic poses an interesting challenge due to the synchronous nature of the
language and the prioritized rules defining its semantics. To overcome this difficulty,
we propose a general procedure for simulating synchronous set relations in rewriting
logic that is sound and, for deterministic relations, complete. We also report on the
finding of two issues at the design level of the original PLEXIL semantics that were
identified with the help of the executable specification in Maude.

1 Imtroduction

Synchronous languages were introduced in the 1980s to program reactive systems,
i.e., systems whose behavior is determined by their continuous reaction to the envi-
ronment where they are deployed. Synchronous languages are often used to program
embedded applications and automatic control software. The family of synchronous
languages is characterized by the synchronous hypothesis, which states that a reac-
tive system is arbitrarily fast and able to react immediately in no time to stimuli
from the external environment. One of the main consequences of the synchronous
hypothesis is that components running in parallel are perfectly synchronized and
cannot arbitrarily interleave. The implementation of a synchronous language usually
requires the simulation of the synchronous semantics into an asynchronous computa-
tion model. This simulation must ensure the validity of the synchronous hypothesis
in the target asynchronous model.

The Plan Ezecution Interchange Language (PLEXIL) [9] is a synchronous lan-
guage developed by NASA to support autonomous spacecraft operations. Space
mission operations require flexible, efficient and reliable plan execution. The com-
puter system on board the spacecraft that executes plans is called the ezecutive
and it is a safety-critical component of the space mission. The Universal Fzecutive
(UE) [20] is an open source PLEXIL executive developed by NASA!. PLEXIL and
the UE have been used on mid-size applications such as robotic rovers and a pro-
totype of a Mars drill, and to demonstrate automation for the International Space
Station.

Given the critical nature of spacecraft operations, PLEXTL’s operational seman-
tics has been formally defined [8] and several properties of the language, such as
determinism and compositionality, have been mechanically verified [7] in the Pro-
totype Verification System (PVS) [13]. The formal small-step semantics is defined

'http://plexil.sourceforge.net.

using a compositional layer of five reduction relations on sets of nodes. These nodes
are the building blocks of a PLEXIL plan and represent the hierarchical decompo-
sition of tasks. The atomic relation describes the execution of an individual node
in terms of state transitions triggered by changes in the environment. The micro
relation describes the synchronous reduction of the atomic relation with respect to
the mazimal redexes strategy, i.e., the synchronous application of the atomic rela-
tion to the maximal set of nodes of a plan. The remaining three relations are the
quiescence relation, the macro relation and the execution relation which describe the
reduction of the micro relation until normalization, the interaction of a plan with
the external environment, and the n-iteration of the macro relation corresponding
to n time-steps, respectively. From an operational point of view, PLEXIL is more
complex than general purpose synchronous languages such as Esterel [2] or Lus-
tre [4]. PLEXIL is designed specifically for flexible and reliable command execution
in autonomy applications.

In this paper, we propose a rewriting logic semantics of PLEXIL in Maude [5]
that complements the small-step structural operational semantics written in PVS. In
contrast to the PVS higher-order logic specification, the rewriting logic semantics of
PLEXIL is executable. Indeed, the Maude specification is by itself an interpreter of
the language. This interpreter is intended to be a semantic benchmark for validating
the implementation of PLEXTL executives such as the Universal Executive and a
testbed for designers of the language to study new features or possible variants of the
language. Additionally, by using a graphical interface [15], PLEXIL developers will
be able to exploit the formal analysis tools provided by Maude to verify properties
of actual plans.

Rewriting logic is a logic of concurrent change in which a wide range of models
of computation and logics can be faithfully represented. The rewriting semantics of
a synchronous language such as PLEXIL poses interesting practical challenges be-
cause Maude implements the maximal concurrency of rewrite rules by interleaving
concurrency. That is, although rewriting logic allows for concurrent synchronous
specifications at the mathematical level, Maude executes the rewrite rules by inter-
leaving concurrency. To overcome this problem, we develop a serialization procedure
that allows for the simulation of a synchronous relations via set rewriting systems.
This procedure is presented in a library of abstract set relations that we have written
in PVS. The procedure is sound and complete for the synchronous closure of any
deterministic relation under the mazimal redezes strategy.

We have used the rewriting logic semantics of PLEXIL to validate the semantics
of PLEXIL against a wide variety of plan examples. We report on the findings of
two issues of PLEXIL’s original semantics that were discovered with the help of the
rewriting logic semantics of PLEXTL presented in this paper: the first was found
at the level of the atomic relation for which undesired interleaving semantics were
introduced in some computations, and the second was found at the level of the
micro relation for which spurious infinite loops were present in some computations.
Solutions to both issues were provided by the authors, and have been adopted in
the latest version of PLEXIL semantics.

Summarizing, the contributions presented in this paper are:

e The rewriting logic specification of PLEXIL semantics.

e A library of abstract set relations suitable for the definition and verification
of synchronous relations.

e A serialization procedure for the simulation of synchronous relations by rewrit-
ing, and an equational version of it in rewriting logic for deterministic syn-
chronous relations.

e The findings on two issues in the design of the original PLEXIL semantics,
and the corresponding solutions that were adopted in an updated version of
the language semantics.

Outline of the paper. This paper is organized as follows. Background on rewrit-
ing logic and its relation to Structural Operational Semantics are summarized in
Section 2. In Section 3, we present the library of set relations, including the sound-
ness and completeness proof of the serialization procedure. Section 4 describes the
rewriting logic semantics of PLEXIL. In Section 5, we discuss preliminary results.
Related work and concluding remarks are presented in Section 6.

2 Rewriting Logic and Structural Operational Seman-
tics

Rewriting logic [11] is a general semantic framework that unifies in a natural way
a wide range of models of concurrency. Language specifications can be executed in
Maude, a high-performance rewriting logic implementation, and benefit from a wide
set of formal analysis tools available to it, such as Maude’s LTL Model Checker, for
instance.

A rewriting logic specification or theory is a tuple R = (X, E U A, R) where:

e (X, EUA) is a membership equational logic theory with 3 a signature having a
set of kinds, a family of sets of operators, and a family of disjoint sets of sorts;
E a set of Y-sentences, which are universally quantified Horn clauses with
atoms that are equations (¢ = t') and memberships (¢ : s), with ¢,¢ terms
and s a sort; A a set of “structural” axioms (typically associativity and/or
commutativity and/or identity) such that there exists a matching algorithm
modulo A producing a finite number of A-matching substitutions; and

e R a set of universally quantified conditional rewrite rules of the form

(VX)r:t—tif /\u,-zu;/\/\vj:sj/\/\'wl —]
i i l
where X is a set of sorted variables, r is a label, ¢,¢', u;, u{,v;,w; and wj are
terms, and s; are sorts. A condition of a rule is called an equational condition
if it does not contain atoms of the form w; — wj.

Intuitively, R specifies a concurrent system, whose states are elements of the
initial algebra Tx/gyua specified by the theory (3, E U A) and whose concurrent
transitions are specified by the rules R. Concurrent transitions are deduced accord-
ing to the set of inference rules of rewriting logic, which are described in detail in [3]
(together with a precise account of the more general forms of rewrite theories and
their models). Using these inference rules, a rewrite theory R proves a statement of
the form (VX) ¢t — ¢/, written as R+ (VX) ¢t — ¢/, meaning that, in R, the state
term ¢ can transition to the state term ¢’ in a finite number of steps. A detailed dis-
cussion of rewriting logic as a unified model of concurrency and its inference system
can be found in [11].

We have a one-step rewrite [t|pua — & [t']Eua in R iff we can find a term
u € [t|gua such that u can be rewritten to v using some ruler :a — bif C € R in
the standard way (see [6]), denoted u — g v, and we furthermore have v € [t']| gua.
For arbitrary E and R, whether [t|gua — R [t'| Eua holds is in general undecidable,
even when the equations in E are confluent and terminating modulo A. Therefore,
the most useful rewrite theories satisfy additional executability conditions under
which we can reduce the relation [t|pya — = [t'|Eua to simpler forms of rewriting
just modulo A, where both equality modulo A and matching modulo A are decidable.

The first condition is that F should be ground confluent and terminating modulo
A [6]. This means that in the rewrite theory Rg/4 = (%, 4, E), (i) all rewrite
sequences terminate, that is, there are no infinite sequences of the form [¢1]4 —® /A
[t2]a - [tn]la — Ry [Ent+1]a-- -, and (ii) for each [¢]4 € T4 there is a unique A-
equivalence class [cang/4(t)]a € Tx 4 called the E-canonical form of [t] 4 modulo A
such that there exists a terminating sequence of zero, one, or more steps [t] A—

[cang)a(t)]a-

The second condition is that the rules R should be coherent [21] relative to the
equations F modulo A. This precisely means that, if we decompose the rewrite
theory R = (%, E U 4, R) into the simpler theories Rg/4 = (%, 4, E) and Rp/q =
(%, A, R), which have decidable rewrite relations —x /a and —g, /A because of
the assumptions of A, then for each A-equivalence class [t]4 such that [t]a —=® ,
[t']a we can always find a corresponding rewrite [cang/4(t)]a — =y, [t"]4 such
that [cang/4(t')]a = [cang/4(t")]a. Intuitively, coherence means that we can always
adopt the strategy of first simplifying a term to canonical form with £ modulo A,
and then apply a rule with R modulo A to achieve the effect of rewriting with R
modulo E U A.

The conceptual distinction between equations and rules has important conse-
quences when giving the rewriting logic semantics of a language L as a rewrite
theory Ry, = (X1, Er U AL, Rr). Rewriting logic’s abstraction dial [12] captures
precisely this conceptual distinction. One of the key features of Structural Opera-
tional Semantics is that it provides a step-by-step formal description of a language’s
evaluation mechanisms [14]. Setting the level of abstraction in which the interleav-
ing behavior of the evaluations in I is observable, corresponds to the special case in
which the dial is turned down to its minimum position by having E; U A = (. The
abstraction dial can also be turned up to its mazximal position as the special case in
which Ry = 0, thus obtaining an equational semantics of the language. In general,

*
RE/a

we can make a specification as abstract as we want by identifying a subset R} C Ry,
such that the rewrite theory (X1, B U AL UR), Ry \ R}) satisfies the executability
conditions aforementioned. We refer the reader to [12,17,19] for an in-depth pre-
sentation of the relationship between structural operational semantics and rewriting
logic semantics, and the use of equations and rules to capture in rewriting logic the
dynamic behavior of language semantics.

The conceptual distinction between equations and rules also has important prac-
tical consequences for program analysis, because it affords massive state space re-
duction which can make formal analyses such as breadth-first search and model
checking enormously more efficient. Because of state-space explosion, such anal-
yses could easily become infeasible if we were to use a specification in which all
computation steps are described with rules.

3 A Rewriting Library for Synchronous Relations

When designing a programming language, it is useful to be able to define its semantic
relation, to formally prove properties of this relation and to execute it on particular
programs. However, defining such a semantic relation and formally reasoning about
it is generally difficult, time consuming, and error-prone. This would be a major
endeavor if it had to be done from scratch for each language. Moreover, since
programming languages tend to evolve constantly, tools must allow reusing parts of
former developments to support rapid yet correct prototyping.

Fortunately, small-step operational semantic relations are, in general, built from
simple relations with a limited number of operations, such as reflexive-transitive
extension, reduction to normal form, parallel extension, etc. As a minimum, the
framework should include a library containing the definitions of these operations
and formal proofs of their properties. This will considerably reduce the amount of
work needed to define the semantic relation of particular programming languages
and formally prove their properties. Defining the semantic relation of synchronous
languages requires defining the synchronous extension of an atomic execution re-
lation, an operation that has been much less formally studied than other relation
operations such as the reflexive-transitive extension or the parallel extension.

We present in this section a first attempt to design a framework for rapid yet
correct prototyping of semantic relations, in particular of synchronous languages.
This framework allows for defining semantic relations, executing them on particular
programs and formally proving some of their properties using general theorems
about the operations that permit building relations from relations. We have been
experimenting with this framework using various versions of the PLEXIL language
(see Section 4).

The definitions and properties presented in Section 3.1 have been developed in
PVS. The Maude engine is used for executing the semantic relations on particular
programs. The full development of the framework, including the formal semantics
of PLEXIL, is available from http://research.nianet.org/fm-at-nia/PLEXIL.

3.1 Set Relations and Determinism

Let — be a binary relation on a set T'. We say that a € T is a redex if there exists
a’ € T such that a — d, and that it is a normal form otherwise. We denote by
0 -7 and —*, the identity relation, n-fold composition, and reflexive-transitive
closure of —, respectively.

In addition to the above relations, we also define the normalized reduction rela-
tion —+ of —.

—

Normalized reduction a—!a’ if and only if a—*a’ and o’ is a normal form.

Henceforth, we assume that the relation — is defined on sets over an abstract
type T, i.e., » C P(T) x P(T). We define the asynchronous extension of —, denoted
I

E>, as the congruence closure of — and the parallel extension of —, denoted —, as
the parallel closure of —.

Asynchronous extension a 5 o if and only if there exist sets b and b’ such that
bCa,b#2,b—>b andd = (a\b)UV.

Parallel extension a ﬂ> d if and only if there exist b1, ..., by, nonempty, pairwise
disjoint subsets of a, and sets b}, ..., b, such that b; — b, and &’ = (a\|J; b;) UJ Y.

The definition of a synchronous reduction requires the definition of a strategy
that selects the redexes to be synchronously reduced.

Strategy A strategy is a function mapping elements a € P(T) into by, ...,bn,
nonempty, pairwise disjoint subsets of a such that all b; are redexes for —.

Synchronous extension Let s be a strategy, a — o’ if and only if there exist
4.0} such that s(a) = {b1,...,bs}, bi = b and o’ = (a \ U, bs) U U, b;.

A natural way of defining strategies is via priorities. A priority is a function p
that maps elements a € P(T) into natural numbers.

Maximal redex Let a € P(T) and let p be a priority function. A nonempty subset
b of a is said to be a mazimal redez of a if it is a redex, and for all nonempty subsets ¢
of a such that c¢ is a redex, ¢ # b and ¢cNb # @, we have p(b) > p(c). By construction,
the set of maximal redexes of a set are pairwise disjoint. The mazimal rederes
strategy is the function that, given a priority function, maps elements a € P(T') into
the set of its maximal redexes.

In addition to the definition of the relation operators presented here, our library
includes formal proofs of properties related to determinism and compositionality for
abstract set relations. In this paper, we will focus on determinism as this property
is fundamental to the specification of synchronous relations in rewriting logic.

Determinism A binary relation — defined on a set T is said to be deterministic
if for all a, @’ and a” in T, a — o’ and a — a” implies o’ = d”.

Determinism is a stronger property than confluence, i.e., a deterministic relation
is also confluent, but a confluent relation is not necessarily deterministic.

Proposition 3.1 (Determinism of —", —! and). If the relation — is determin-
istic, then so are the relations —", -, and .

In contrast, even if the relation — is deterministic, the relations —*, = and —|l
are not always deterministic.

3.2 Executing Semantic Relations

Executing the semantic relation of a programming language is desirable during the
design phase of the language. In particular, it allows the designer of the features
to experiment with different semantic variants of the language before implementing
them.

Rewrite systems are a computational way of defining binary relations. Since our
formalism is based on set relations, we consider rewrite systems on an algebra of
terms of type T' modulo associativity, commutativity, identity, and idempotence: the
basic axioms for the union of sets. We denote the equality on terms of this algebra
by =acpr1- The relation — defined by a rewrite system R is defined as follows.

Relation defined by a rewrite system a — b if and only if there exists a rewrite
rule] — r in R and a substitution ¢ such that a =a¢p7 ol and b =s0y7 o7

We remark that the previous definition uses the substitution closure of the
rewrite system, rather than the more traditional definition based on the congru-
ence closure. For example, if we consider the rewrite system

A(z) — B(z),

we have that A(0) — B(0) and A(1) — B(1). On the other hand, A(0), A(1) is not
a redex for —.

The synchronous extension of a relation — challenges the standard asynchronous
interpretation of rewrite systems. Consider again the previous example. The asyn-
chronous extension of — defined in Section 3.1, which indeed encodes the con-
gruence closure, relates A(0), A(1) > B(0),A(1) and A(0),A(1) = A(0), B(L).
However, it does not relate A(0),A(1) to B(0), B(1), which corresponds to the
parallel reduction of both A(0) and A(1). In this particular case, we have that
A(0), A(1) S B(0), A(1) = B(0), B(1).

We remark that if a = b, for a strategy s, then a>"b. However, in order to select
the redexes to be reduced, we need additional machinery. In particular, we need
to keep a log book of redexes that need to be reduced and redexes that have been
already reduced. We propose the following procedure to implement the synchronous
extension of a relation —, for a strategy s, in an asynchronous rewrite engine, such
as Maude.

Serialization procedure Given a term a € P(T'), we compute a term b as follows.

1. Reduce the pair ((Js(a) ; @) to a normal form (@ ; a’) using the following
rewrite system:

(a'i7c; d) - (C, a’;7d>7
where a; — af.

2. The term b is defined as a \ |Js(a) Ud’.

Since a strategy is a set of redexes, and this set is finite, the procedure is well-
defined, i.e., it always terminates and returns a term. However, the procedure is not
necessarily deterministic.

In our previous example, we want to apply the procedure to A(0), A(1), B(1)
using the maximal redexes strategy (assuming that all terms have the same pri-
ority). Since max,({A(0), A(1), B(1)}) = {A(0), A(1)}, we have to reduce the pair
(A(0), A(1) ; @), to its normal form (& ; B(0), B(1)). Then, we compute

{4(0), A(1), B} \ {4(0),A(1)} U {B(0), B(1)},
which is equal to B(0), B(1). We check that A(0), A(1), B(1) = B(0), B(1).

Theorem 3.2 (Correctness of serialization procedure). The serialization procedure
is sound, i.e., if the procedure returns b from a, then a > b. Furthermore, if — is
deterministic, the procedure is complete, i.e., if a — b then the procedure returns b
from a.

Proof. Soundness Assume that the procedure returns b = a\|J s(a)Ud’ from a. We

have to prove that a = b. Let s(a) = {a1,...,an}, where a; C a, for 1 < i < n.
From the definition of a strategy, the elements in s(a) are pairwise disjoint.
Then, from the procedure, a’ = ai,...,a;,, where a; — a}, for 1 <4 < n. Let
¢ C a be such that none of the subsets of ¢ is in s(a). Then, a has the form
a=ai,...,an,c. Hence, b=a),...,a,,c. By definition of 2, we have that
a1y ...,0n,c>dl,...,al,c.

Completeness In this case, it suffices to note that by Proposition 3.1, if — is deter-
ministic, then = is deterministic. Therefore, the normal form of {|Js(a) ; @)
is unique and the procedure returns a unique b = a\ |Js(a) Ua’. This b is the
only term that is related to a in the relation .

U

4 Rewriting Logic Semantics of PLEXIL

The framework presented in Section 3 is abstract with respect to the elements in
the set T' and the basic set relation —. If we consider that T is a set of PLEXIL
nodes and — is PLEXIL’s atomic relation, we can deduce by Proposition 3.1 that,
since PLEXIL’s atomic relation is deterministic [7] , PLEXIL’s micro and quiescence
relations are deterministic as well. Therefore, we can use the serialization procedure

presented in Section 3.2 to implement a sound and complete formal interpreter of
PLEXIL in Maude.

In this section, we describe in detail the specification of such an interpreter.
We only discuss the atomic and micro relations since they are the most interesting
for validating the synchronous semantics of PLEXTL. More precisely, we present
the rewrite theory Rpxr, = (EPX[”EPXL U APXL7-RPXL)7 specifying the rewriting
logic semantics for PLEXIL’s atomic and micro relations. We use the determinism
property of PLEXTL’s atomic relation to encode it as the computation rules in Fpxr,
because it yields a confluent equational specification. Consequently, the serialization
procedure for PLEXTL’s synchronous semantics into rewriting logic can be defined
equationally, thus avoiding the interleaving semantics associated with rewrite rules
in Maude. Of course, due to the determinism property of the language, one can
as well turn up the “abstraction dial” to its maximum by making the rewrite rules
Rpxr, into computational rules. This will result in a faster interpreter, for example.
Nevertheless, we are interested in PLEXIL semantics at the observable level of the
micro relation. Therefore, in the rewrite theory Rpxr: (i) the equational theory
(EpxL, Epxr, U Apxr,) defines the semantics of the atomic relation and specifies
the serialization procedure for the synchronous semantics of PLEXIL, and (ii) the
rewrite rules Rpxy, define the semantics of the micro relation.

In this Section we assume the reader is familiar with the syntax of Maude [5].

4.1 PLEXIL Syntax

A PLEXIL plan is a tree of nodes representing a hierarchical decomposition of
tasks. The interior nodes in a plan provide the control structure and the leaf nodes
represent primitive actions. The purpose of each node determines its type: List
nodes group other nodes and provide scope for local variables, Assignment nodes
assign values to variables (they also have a priority, which serves to solve race
conditions between assignment nodes), Command nodes represent calls to commands,
and Empty nodes do nothing. Each PLEXIL node has gate conditions and check
conditions. The former specify when the node should start executing, when it should
finish executing, when it should be repeated, and when it should be skipped. Check
conditions specify flags to detect when node execution fails due to violations of pre-
conditions, post-conditions, or invariants. Declared variables in nodes have lexical
scope, that is, they are accessible to the node and all its descendants, but not siblings
or ancestors. The execution status of a node is given by status such as Inactive,
Waiting, Executing, etc. The erecution state of a plan consists of (i) the erternal
state corresponding to a set of enwvironment variables that are accessed through
lookups on environment variables, and the internal state which is a set of nodes and
(declared) variables.

Figure 1 illustrates with a simple example the standard syntax of PLEXIL. In
this particular example, the plan tasks are represented by the root node SafeDrive,
the interior node Loop, and the leaf nodes OneMeter, TakePic and Counter. OneMeter
and TakePic are, for example, nodes of type Command. The node Counter has two
different conditions: Start is a gate condition constraining the execution of the
assignment to start only when the node TakePic is in state Finished, while Pre is

List SafeDrive {
int pictures = 0;
End:
LookupOnChange (WheelStuck) == true OR pictures == 10;
List Loop {
Repeat-while:
LookupOnChange (WheelStuck) == false;
Command OneMeter {
Command: Drive(l);
}
Command TakePic
Start: OneMeter.status == FINISHED AND pictures < 10;
Command: TakePicture();
}

Assignment Counter {

Start: TakePic.status == FINISHED;
Pre: pictures < 10;
Assignment: pictures := pictures + 1;

}
}
}

Figure 1. SafeDrive: A PLEXIL Plan Example

a check condition for the number of pictures to be less than 10. The internal state
of the plan at a particular moment is represented by the set of all nodes of the plan,
plus the value of the variable pictures, while the external state of the plan contains
the (external) variable WheelStuck.

The external state of a plan is defined in the module EXTERNAL-STATE-SYNTAX.
The sort ExternalState represents sets of elements of sort Pair, each of the form
(name, value); we assume that the sorts Name and Value, specifying names and
values, respectively, have been defined previously in the functional modules NAME
and VALUE, respectively.

fmod EXTERNAL-STATE-SYNTAX is
protecting Name .

protecting Value .

sort Pair .

op {_,_) : Name Value -> Pair .
sort ExternalState .

subsort Pair < ExternalState .

op mtstate : —> ExternalState .

op _,_ @ ExternalState ExternalState -> ExternalState [assoc comm id: mtstate]
eq ES:ExternalState , ES:ExternalState = ES:ExternalState .

endfm

The internal state of a plan is represented with the help of Maude’s built-
in CONF module supporting object based programming. The internal state has
the structure of a set made up of objects and messages, called configurations in
Maude, where the objects represent the nodes and (declared) variables of a plan.
Therefore, we can view the infrastructure of the internal state as a configuration
built up by a binary set union operator with empty syntax, i.e., juxtaposition,
as __ : Configuration x Configuration — Configuration. The operator __ is
declared to satisfy the structural laws of associativity and commutativity and to

10

have identity mtconf. Objects and messages are singleton set configurations and
belong to subsorts Object, Msg < Configuration, so that more complex con-
figurations are generated out of them by set union. An object, representing a
node or a (declared) variable, in a given configuration is represented as a term
(O:C |a:vi,...,an : v,), where O is the object’s name or identifier (of sort
0Oid), C is its class (of sort Cid), the a;’s are the names of the object’s atiribute
identifiers, and the v;’s are the corresponding values. The set of all the attribute-
value pairs of an object state (of sort Attribute) is formed by repeated application
of the binary union operator _, which also obeys structural laws of associativity,
commutativity, and identity, i.e., the order of the attribute-value pairs of an ob-
ject is immaterial. The internal state of a plan is defined in the functional module
INTERNAL-STATE-SYNTAX by extending the sort Configuration; the sorts Exp and
Qualified, which we assume to be defined, are used to specify expressions and
qualified names, respectively.

fmod INTERNAL-STATE-SYNTAX is

extending CONFIGURATION . protecting EXP .

protecting QUALIFIED .

subsort Qualified < 0id . ——— Qualified elements are object identifiers
ops List Command Assignment Empty : -> Cid . —-—— Types of nodes

sort Status .

ops Inactive Waiting Executing Finishing Failing Finished

IterationEnded Variable : -> ExecState .
sort Outcome .
ops None Success Failure : —-> Outcome .
op status: : Status -> Attribute . ——— Status of execution
op outcome: : Outcome -> Attribute . ——— Qutcome of execution
ops start: skip: repeat: end: : Exp -> Attribute . --- Gate conditions
ops pre: post: inv: : Exp -> Attribute . —-—- Check conditions
op command: : Exp —> Attribute . ——— Command of a command node
op assignment: : Exp -> Attribute . ——— Assignment of an assignment node
ops initval actval: Exp —> Attribute . ——— Initial and actual values

—-—— of a variable node
endfm

Using the infrastructure in INTERNAL-STATE-SYNTAX, the internal state of SafeDrive
in Figure 1, is represented by the configuration in Figure 2. Observe that the sort
Qualified provides qualified names by means of the operator

.: Qualified x Qualified— > Qualified,

which we use to maintain the hierarchical structure of the plans. The dots at the
end of each object represent the object’s attributes that are not explicitly defined
by the plan but that are always present in each node such as the status or the
outcome. There is a “compilation procedure” from PLEXIL plans to their cor-
responding representation in Maude, that we do not discuss in this paper, which
includes all implicit elements of a node as attributes of the object representation of
the node.

We are now ready to define the sort State representing the execution state of the
plans in the functional module STATE-SYNTAX, by importing the syntax of external
and internal states:

11

< SafeDrive : List | end: LookupOnChange (WheelStuck) == true OR

pictures == 10, ce. >
< Loop . SafeDrive : List | repeat: LookupOnChange (WheelStuck) == false , ... >
< OneMetter . Loop . SafeDrive : Command | command: Drive(l), ... >
< TakePic . Loop . SafeDrive : Command | start: OneMeter.Status ==
Finished and pictures < 10, command: TakePicture(), ... >
< Counter . Loop . SafeDrive : Assignment | pre: pictures < 10,
assignment: pictures := pictures + 1, ... >

< pictures . SafeDrive : Memory | initval: 0, actval: 0 >

Figure 2. SafeDrive in Rpx,

fmod STATE-SYNTAX is

pr EXTERNAL-STATE-SYNTAX .

pr INTERNAL-STATE-SYNTAX .

sort State .

op _|—_ : ExternalState Configuration -> State .
endfm

We adopt the syntax I' - 7 to represent the execution state of the plans, where
I" and 7 are the external and internal states, respectively.

4.2 PLEXIL Semantics

PLEXIL execution is driven by external events. The set of events includes events
related to lookup in conditions, e.g., changes in the value of an external state that
affects a gate condition, acknowledgments that a command has been initialized,
reception of a value returned by a command, etc. We focus on the execution se-
mantics of PLEXTL specified in terms of node states and transitions between node
states that are triggered by condition changes (atomic relation) and its synchronous
closure under the maximal redexes strategy (micro relation).

PLEXIL’s atomic relation consists of 42 rules. These rules are indexed by the
type and the execution status of nodes into a dozen groups. Each group associates
a priority to its set of rules which defines a linear order on the set of rules.

The atomic relation is defined by (T,) - P —, P’, where P C 7. For instance,
the four atomic rules corresponding to the transitions from Executing for nodes of
type Assignment are depicted in Figure 3. Rule r3 updates the variable x to the
value of the expression e in the given state, when the expressions associated with
the gate condition End and the check condition Post of node A, both evaluate to
true in the given state. In rule r1, AncInv(4) is a predicate, parametric in the name
of nodes, stating that none of the ancestors of A has changed the value associated
with its invariant condition to false. The value L represents the special value
“Unknown”. We use (I',7) F e ~ v to denote that expression e evaluates to value
v in state I' m; by abuse of notation, we write (I',m) F e % v to denote that
expression e does not evaluate to value v in (T', 7).

The relation r < s between the labels of two different rules specifies that the
rule r is only applied when the second rule s cannot be applied. That is, the
binary relation on rules defines the order of their application when deriving atomic
transitions. So, a rule r can be used to derive an atomic transition if all its premises
are valid and no rule higher than r (in its group) is applicable. In the case of

12

(T',7) F AncInv(A) ~» false Abody = x:= e
A.type = Assignment A.status = Executing

r
(T',7) F Node A —, Node A with [status = Finished, x = L, outcome = Failure] !

(T',7) - A.Invariant ~» false Abody = x == e
A.type = Assignment A.status = Executing

T
(T,) F Node A —, Node A with [status = IterationFnded, x = L , outcome = Failure] -

(T',7) F A.End ~» true Abody = x:= e
(T, w) - A.Post ~» true C,mkFe~w
A.type = Assignment A.status = Executing

T
(T,) F Node A —, Node A with [status = IterationFnded, x = w, outcome = Success| -

(T,7) - A.End ~ true (T, m) I A.Post 7 true
A.type = Assignment A.status = Executing

T
(T,) - Node A —», Node A with [status = IterationEnded, outcome = Failure|

{7‘4 <rg<nrg <r1}

Figure 3. Atomic rules corresponding to the transitions from Executing for nodes
of type Assignment

PLEXIL’s atomic relation, the binary relation < on rules is a linear ordering. This
linearity is key to the determinism of PLEXIL (see [8]).

The micro relation T - m —,,, ©’, the synchronous closure of the atomic relation
under the maximal redexes strategy, is defined as:

(T,m)F PL — Ch

(Fyﬂ') |_Pn —a Qn
T'kbx ——ﬁnl(ﬂ'\ LJ }%) U LJ Qi

1<i<n 1<i<n

Micro

where M, = {Pi,..., P,} is the set of node and memories in 7 that are affected by
the micro relation. If two different processes in 7, say A and B, write to the same vari-
able, only the update of the process with higher priority is considered (assignment
nodes have an associated priority always), e.g., A if A.priority > B.priority, B
if B.priority > A.priority, and none otherwise.

In order to specify the PLEXIL semantics in Maude, we first define the infrastruc-
ture for the serialization procedure in the the module SERIALIZATION-INFRASTRUCTURE.

fmod SERIALIZATION-INFRASTRUCTURE is
inc STATE-SYNTAX .

op [_:_|_] : 0id Cid AttributeSet -> Object . —-—— New syntactic sugar for objects

op updateStatus : Qualified Status -> Msg . ——— Update status message
op updateOutcome : Qualified Outcome —-> Msg . —-—— Update outcome message
op wupdateVariable : Qualified Value -> Msg . ——— Update variable message

13

op applyUpdates : State -> State . —-—— Application of updates

var Gamma : ExternalState . var Pi : InternalState .
eq applyUpdates(Gamma |- [A:0id : C:Cid | Att:AttributeSet status: S:Status]
updateStatus (A:0id , S’:Status) Pi)
= applyUpdates(Gamma |- [A:0id : C:Cid |
Att:AttributeSet status: S’ :Status] Pi)
eq applyUpdates(Gamma |- [A:0id : C:Cid | Att:AttributeSet] Pi)
= applyUpdates(Gamma |- < A:0id : C:Cid | Att:AttributeSet > Pi)

eq applyUpdates(St:State) = St:State [owise]
endfm

Following the idea of the serialization procedure, we distinguish between un-
primed and primed redexes by using syntactic sugar for denoting objects in the
Maude specification: unprimed redexes are identified with the already defined syn-
tax for objects in the form of (O : C | ...) and primed redexes are identified with
the new syntax for objects in the form of [O : C | ...]. We use messages, i.e.,
elements in the sort Msg, to denote the update actions associated with the reduc-
tion rules for the atomic relation; we accumulate these messages in the internal
state of the execution state of the plans, i.e., we also use the internal state in the
spirit of the log book of the serialization procedure. For example, the configuration:
updateStatus(A, IterationEnded)
updateVariable(x,w)
updateQutcome (A, Success)
corresponds to the update actions in the conclusion of rule rg in Figure 3. The
function applyUpdates applies all the existing updates in the internal state and
“unprimes” the “primed” nodes. In the specification above, it is shown how the
status of a node is updated and how primed nodes become unprimed.

We give the equational serialization procedure in the general setting in which we
consider a linear ordering on the rules.

Equational serialization procedure (with priorities) Let

{r;: (T',m) F Node A —>, Node A with [updates;]|if Ci}i<i<n

be the collection of atomic rules (in horizontal notation) defining the transition
relation for nodes of type T in status S, with r, < --- < r; < --- < 11, where
updates; is the set of update actions (the order in the update actions is irrelevant)
in the conclusion of r; and C; is the set of premises of ;. The equational serialization
procedure is given by the following set of equations, in Maude notation, defining the
function symbol, say, r:

var Gamma : ExternalState . var A : 0id . var S : Status .
var Pi : Configuration . var T : Cid . var Attr : AttributeSet .
op r : State —-> State .
eq r(Gamma |- < A : T | status: S , Attr > Pi)
= 1if Cl == true then r(Gamma |- [A : T | status: S , Attr]
messages (updatesl) Pi)
else if C2 == true
. else if Cn == true then r(Gamma |- [A : T | status: S , Attr]
messages (updatesn) Pi)
else r{ Gamma |- [A : T | status: S , Attr] Pi) fi
fi ...

fi .

eq r(Gamma |- Pi) = Gamma |- Pi [owise]

14

where messages(updadates;) represents the message configuration associated with
the update actions in the conclusion of rule r;.

The equational serialization procedure defines a fresh function symbol, say, r :
State — State. The first equation for r tries to apply the atomic rules in the
given order, by first evaluating the condition and then marking the affected node.
If the condition evaluates to true, then update messages are generated. The second
equation, removes the function symbol r when there aren’t any more possible atomic
reductions with the rules {r;}.

The atomic relation is defined in the functional module ATOMIC-RELATION by
instantiating the equational serialization procedure for each one of the twelve groups
of atomic rules with a different function symbol for each one.

Finally, the micro relation is defined by the rule micro in the system module
PLEXIL-RLS, which materializes the rewrite theory Rpxr, in Maude:

mod PLEXIL-RLS is

pr ATOMIC-RELATION .

pr SERIALIZATION-INFRASTRUCTURE .

rl [micro] : Gamma |- Pi => Gamma |- applyUpdates{(al{(...al2(Gamma |- Pi)...)) .
endm

where aj,...,a1s are the function symbols in ATOMIC-RELATION defining the
serialization procedure for each one of the twelve groups of rules.

5 Preliminary Results

We have used Rpxi, to validate the semantics of PLEXIL against a wide variety
of plan examples. We report on the following two issues of the original PLEXIL
semantics that were discovered with the help of Rpxr.:

1. Non-atomicity of the atomic relation. A prior version of the atomic rules
r3 and r4 for Assignment nodes in state Executing, presented in Figure 3,
introduced an undesired interleaving semantics for variable assignments, which
invalidated the synchronous nature of the language.

2. Spurious non-termination of plans. Due to lack of detail in the original spec-
ification of some predicates, there were cases in which some transitions for
List nodes in state IterationEnded would lead to spurious infinite loops.

Although the formal operational semantics of PLEXIL in [8] has been used to
prove several properties of PLEXTL, neither one of the issues was previously found.
As as matter of fact, these issues do not compromise any of the proven proper-
ties of the language. Solutions to both issues were provided by the authors, and
have been adopted in the latest version of the formal PLEXIL semantics. We are
currently using Rpxr, as the formal interpreter of PLEXIL’s Formal Interactive Vi-
sual Environment [15] (PLEXIL5), a prototype graphical environment that enables
step-by-step execution of plans for scripted sequence of external events, for further
validation of the language’s intended semantics.

15

We have also developed a variant of Rpxr, in which the serialization procedure
was implemented with rewrite rules, instead of equations, and rewrite strategies. In
general, Rpxr, outperforms that variant by two orders of magnitude on average, and
by three orders of magnitude in some extreme cases.

The rewrite theory Rpxr, has approximately 1000 lines of code, of which 308 lines
correspond to the module ATOMIC-RELATION. The rest corresponds to the syntax and
infrastructure specifications.

6 Related Work and Conclusion

Rewriting logic has been used previously as a testbed for specifying and animating
the semantics of synchronous languages. M. AlTurki and J. Meseguer [1] have stud-
ied the rewriting logic semantics of the language Orc, which includes a synchronous
reduction relation. T. Serbanuta et.al. [16] define the execution of P-systems with
structured data with continuations. The focus of the former is to use rewriting logic
to study the (mainly) non-deterministic behavior of Orc programs, while the focus
of the latter is to study the relationship between P-systems and the existing con-
tinuation framework for enriching each with the strong features of the other. Our
approach is more on exploiting the determinism of a synchronous relation to tackle
the problem associated with the interleaving semantics of concurrency in rewriting
logic. Lucanu [10] studies the problem of the interleaving semantics of concurrency
in rewriting logic for synchronous systems from the perspective of P-systems. The
determinism property of the synchronous language Esterel [2] was formally proven
by O. Tardieu in [18].

We have presented a rewriting logic semantics of PLEXTL, a synchronous plan
execution language developed by NASA to support autonomous spacecraft oper-
ations. The rewriting logic specification relies on the determinism of PLEXII.’s
atomic relation and a serialization procedure that enables the specification of a
synchronous relation in an asynchronous computational model. T'wo issues in the
original design of PLEXIL were found with the help of the rewriting logic specifi-
cation of the language: (i) there was an atomic rule with the potential to violate
the atomicity of the atomic relation, thus voiding the synchronous nature of the
language, and (ii) a set of rules introducing spurious non-terminating executions of
plans. We proposed solutions to these issues that were integrated into the current
semantics of the language.

Although we have focused on PLEXIL, the formal framework that we have de-
veloped is presented in a general setting of abstract set relations. In particular, we
think that this framework can be applied to other deterministic synchronous lan-
guages. To the best of our knowledge there was no mechanized library of abstract
set relations suitable for the definition and verification of synchronous relations; nei-
ther are there a soundness and completeness proof of a serialization procedure for
the simulation of synchronous relations by rewrite systems.

To summarize, we view this work as (i) a step forward in bringing the use of
formal methods closer to practice, (ii) a contribution to the modular and mechanized
study of semantic relations, and (iii) yet another, but interesting contribution to the

16

rewriting logic semantics project.

We intend to continue this work with the goal of arriving at a formal envi-
ronment for the validation of PLEXIL. Such an environment would provide a rich
formal tool to PLEXIL enthusiasts for the experimentation, analysis and verifica-
tion of PLEXIL programs, which could then be extended towards a rewriting-based
PLEXIL implementation with associated analysis tools. Part of our future work
is also to investigate the modularity of the equational serialization procedure with
prioritized rules.

Acknowledgments. This work was supported by the National Aeronautics and
Space Administration at Langley Research Center under the Research Cooperative
Agreement No. NCC-1-02043 awarded to the National Institute of Aerospace. The
authors would like to thank the members of the NASA’s Automation for Operation
(A40) project and, specially, the PLEXIL development team led by Michael Dalal
at NASA Ames, for their technical support.

References

1. M. AlTurki and J. Meseguer. Reduction semantics and formal analysis of Orc
programs. Electr. Notes Theor. Comput. Sci., 200(3):25—-41, 2008.

2. G. Berry. The foundations of Esterel. In Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 2000.

3. R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci., 360(1-3):386—414, 2006.

4. P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre: A declarative language
for programming synchronous systems. In Proceedings of the 14th Symposium
on Principles of Programming Languages (POPL), 1987.

5. M. Clavel, F. Durdn, S. Eker, J. Meseguer, P. Lincoln, N. Marti-Oliet, and
C. Talcott. All About Maude - A High-Performance Logical Framework. Springer
LNCS Vol. 4350, 1st edition, 2007.

6. N. Dershowitz and J. P. Jouannaud. Rewrite systems. In Handbook of Theo-
retical Computer Science, Volume B: Formal Models and Sematics (B), pages
243-320. 1990.

7. G. Dowek, C. Mufioz, and C. Péaséreanu. A formal analysis framework for
PLEXIL. In Proceedings of 8rd Workshop on Planning and Plan Execution for
Real-World Systems, September 2007.

8. G. Dowek, C. Muifioz, and C. Pésireanu. A small-step semantics of PLEXIL.
Technical Report 2008-11, National Institute of Aerospace, Hampton, VA, 2008.

9. T. Estlin, A. J6énsson, C. Pésidreanu, R. Simmons, K. Tso, and V. Verna. Plan
Execution Interchange Language (PLEXIL). Technical Memorandum TM-2006-
213483, NASA, 2006.

17

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

D. Lucanu. Strategy-based rewrite semantics for membrane systems preserves
maximal concurrency of evolution rule actions. FElectr. Notes Theor. Comput.
Sci., 237:107-125, 2009.

J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73-155, 1992.

J. Meseguer and G. Rosu. The rewriting logic semantics project. Theor. Comput.
Sci., 373(3):213-237, 2007.

S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752,
Saratoga, NY, June 1992. Springer-Verlag,.

G. D. Plotkin. A structural approach to operational semantics. Technical Re-
port DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark, September 1981.

C. Rocha, C. Mufioz, and H. Cadavid. A graphical environment for the semantic
validation of a plan execution language. In Proceedings of the Third IEEFE Inter-
national Conference on Space Mission Challenges for Information Technology
(SMC-IT), 2009.

T. Serbanuta, G. Stefanescu, and G. Rosu. Defining and executing p systems
with structured data in k. In David W. Corne, Pierluigi Frisco, Gheorghe
Paun, Grzegorz Rozenberg, and Arto Salomaa, editors, Workshop on Mem-
brane Computing, volume 5391 of Lecture Notes in Computer Science, pages
374-393. Springer, 2008.

Traian-Florin Serbanuta, Grigore Rosu, and José Meseguer. A rewriting logic
approach to operational semantics. Inf. Comput., 207(2):305-340, 2009.

O. Tardieu. A deterministic logical semantics for pure esterel. ACM Trans.
Program. Lang. Syst., 29(2), 2007.

Alberto Verdejo and Narciso Marti-Oliet. Executable structural operational
semantics in maude. J. Log. Algebr. Program., 67(1-2):226-293, 2006.

V. Verna, A. J6nsson, C. Pésireanu, and M. Latauro. Universal executive and
plexil: Engine and language for robust spacecraft control and operations. In
Proceedings of the American Institute of Aeronautics and Astronautics Space
Conference, 2006.

P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487-517, 2002.

18

REPORT DOCUMENTATION PAGE onam ADDroved

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) |[2. REPORT TYPE 3. DATES COVERED (From - To)
01-06 - 2009 Technical Memorandum
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Rewriting Logic Semantics of a Plan Execution Language

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Dowek, Gilles; Mufioz, César A.; Rocha, Camilo

5e. TASK NUMBER

5f. WORK UNIT NUMBER
015792.04.01.0423

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-2199

L-19700
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
National Aeronautics and Space Administration NASA

Washington, DC 20546-0001

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

NASA/TM-2009-215770

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited

Subject Category 61

Availability: NASA CASI (443) 757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA to support autonomous spacecraft
operations. In this paper, we propose a rewriting logic semantics of PLEXTIL in Maude, a high-performance logical engine. The rewriting
logic semantics is by itself a formal interpreter of the language and can be used as a semantic benchmark for the implementation of PLEXIL
executives. The implementation in Maude has the additional benefit of making available to PLEXIL designers and developers all the formal
analysis and verification tools provided by Maude. The formalization of the PLEXIL semantics in rewriting logic poses an interesting
challenge due to the synchronous nature of the language and the prioritized rules defining its semantics. To overcome this difficulty, we
propose a general procedure for simulating synchronous set relations in rewriting logic that is sound and, for deterministic relations,
complete. We also report on the finding of two issues at the design level of the original PLEXIL semantics that were identified with the help
of the executable specification in Maude.

15. SUBJECT TERMS
Plan execution; Semantics; Rewriting logic; Synchronous language

16. SECURITY CLASSIFICATION OF: 17. Ililgﬂsl'_l;_lé'}'\lg_ll:l OF |18. gll.:lMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT |c. THIS PAGE PAGES STI Help Desk (email: help@sti.nasa.gov)
19b. TELEPHONE NUMBER (Include area code)
U U U UuU 25 (443) 757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

